Conserved transcriptional activators of the Xenopus rhodopsin gene.

نویسندگان

  • S Leigh Whitaker
  • Barry E Knox
چکیده

Vertebrate rhodopsin promoters exhibit striking sequence identities proximal to the initiation site, suggesting that conserved transcription factors regulate rhodopsin expression in these animals. We identify and characterize two transcriptional activators of the Xenopus rhodopsin gene: homologs of the mammalian Crx and Nrl transcription factors, XOtx5 and XL-Nrl (originally named XL-maf), respectively. XOtx5 stimulated transcription approximately 10-fold in human 293 cells co-transfected with a plasmid containing the rhodopsin promoter (-508 to +41) upstream of luciferase, similar to the approximately 6-fold stimulation with human Crx. XL-Nrl stimulated transcription approximately 27-fold in mammalian 293 cells co-transfected with the rhodopsin luciferase reporter, slightly more than the approximately 17-fold stimulation with Nrl. Together, the Xenopus transcription factors synergistically activated the rhodopsin promoter (approximately 140-fold), as well as in combination with mammalian homologs. Deletion of the Nrl-response element, TGCTGA, eliminated the synergistic activation by both mammalian and Xenopus transcription factors. Deletion of the conserved ATTA sequences (Ret-1 or BAT-1), binding sites for Crx, did not significantly decrease activation by Crx/XOtx5. However, there was increased activation by Nrl/XL-Nrl and an increased synergy when the Ret-1 site was disrupted. These results illustrate conservation of mechanisms of retinal gene expression among vertebrates. In transgenic tadpoles, XOtx5 and XL-Nrl directed premature and ectopic expression from the Xenopus rhodopsin promoter-GFP transgene. Furthermore, activation of the endogenous rhodopsin gene was also observed in some animals, showing that XOtx5 and XL-Nrl can activate the promoter in native chromatin environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis

Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is uncl...

متن کامل

Rhodopsin targeted transcriptional silencing by DNA-binding

Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO)...

متن کامل

Drosophila Goosecoid requires a conserved heptapeptide for repression of paired-class homeoprotein activators.

Goosecoid (Gsc) is a homeodomain protein expressed in the organizer region of vertebrate embryos. Its Drosophila homologue, D-Gsc, has been implicated in the formation of the Stomatogastric Nervous System. Although there are no apparent similarities between the phenotypes of mutations in the gsc gene in flies and mice, all known Gsc proteins can rescue dorsoanterior structures in ventralized Xe...

متن کامل

Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters.

PURPOSE To identify novel transcriptional regulators of rhodopsin expression as a model for understanding photoreceptor-specific gene regulation. METHODS A bovine retinal cDNA library was screened in a yeast one-hybrid assay, with a 29-bp bovine rhodopsin promoter fragment as bait. Expression studies used RT-PCR and beta-galactosidase (LacZ) histochemistry of retinas from transgenic mice hete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 47  شماره 

صفحات  -

تاریخ انتشار 2004